2025
1. Self-powered asphalt-based sensors for smart roads, H He, J Huang, Q Zhao, Q Tan, X Zang*, Nano Energy, 134, 110525,2025
2024
2. Wasted to electrodes in seconds: Ultrafast‑carbonization of coffee powders for high performance zinc-ion hybrid supercapacitors, Z Wei, Z Zhang, D Tang, Y Wei, Z Zhang, X Zang*, Sustainable Materials and Technologies, e01212, 2024
3. Laser-upgraded coal tar for smart pavements in road and bridge monitoring applications,Jincai Huang, Man Zhang, Haoyun He, Qingang Li, Yixin Zhao, Qiulin Tan, Xining Zang*, Microsystem & Nanoengineering, 2024, 10(1), 34
4 Laser Direct Write Passive Sensors for Smart Orthopedic Implants Base on Poly-Ether-Ether-Ketone (PEEK) and Carbon Fiber Reinforced (CFR)-PEEK, Q Li, Y He, Z Han, Z Jin, Z Zhao, X Zang*, 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)
5 Extremely Low Frequency Flexible-Magnet Based Mechanical Antenna, Q Li, W Mo, C Wang, Z Cui, Y Cui, X Zang*, 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)
2023
6. Reconstructing the nanoscale porous structures in coal-based membranes by ultrafast high-temperature sintering for solar-driven water treatment,Liu, C-C; Chen, R.; Wei, Y.; Huang, Y.; Zhang, Z.; Zhao, Y.; Fu, T.; Hu, C.; Huang, X.; Zang, X.*, Nano Energy, 2023, 108634.
7. Printing Three-dimensional Refractory Metal Patterns in Ambient Air: Toward High Temperature Sensors,Yu, J.; Hu, C.; Wang, Z.; Wei, Y.; Liu, Z.; Li, Q.; Zhang, L.; Tan, Q.; Zang, X.*, Advanced Science, 2023, 2302479
8. Application of principal-component analysis to the interpretation of coal tar physico-chemical properties,Zhang, M.; Zang, X.*, Fuel, 338, 2023, 127304 37.
9. Paving Smart Roads: Roll-To-Roll Laser Manufacturing of Tar-based Strain Sensor Networks, M Zhang, J Huang, X Zang*, 2023 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)
2022
10. Laser Direct-Write Sensors on Carbon-fiber-reinforced Polyetheretherketone (CFR-PEEK) for Smart Orthopedic Implants,Hu, X.; Huang, J.; Wei, Y.; Zhao, H.; Lin, S.; Hu, C.; Wang, Z.; Zhao, Z.; Zang, X.*, Advanced Science, 2022, 202105499.
11. Pressure-Strengthened Carbon Fibers from Mesophase Pitch Carbonization Processes,Wei, Y.; Chen, J.; Zhao, H.; Zang, X.*, Journal of Physical Chemistry Letters, 2022, 13, 3283-3289.
12. Upgrading Carbonaceous Materials: Coal, Tar, Pitch, and Beyond,Zang, X.*; Dong, Y.; Jian, C.; Ferralis, N.; Grossman, J. C., Matter, 2022, 5, 430-447.
13. Electronic, structural, and magnetic upgrading of coal-based products through laser annealing,Zang, X.*; Ferralis, N.; Grossman, J. C. ACS Nano, 2022, 16, 2, 2101–2109.
14. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance,Chen, W.; Gu, J.; Liu, Q.; Yang, M,; Zhan, C.; Zang, X.; Pham, T. A.; Liu, G.; Zhang, W.; Zhang, D.; Dunn, B.; Wang, Y. M., Nature Nanotechnology, 2022, 17, 153-158.
15. Laser direct-write sensors on CFR-PEEK for smart orthopedic implants, X Hu, J Huang, Y Wei, H Zhao, Z Zhao, X Zang*, 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems (MEMS)
2021
15. Ultra-thin Carbon Deficient Molybdenum Carbide (α-MoC1−x) Enables High-Rate Mg-ion Based Energy Storage,Zang, X*; Wang, S.; Zhang, R., Journal of Physical Chemistry Letters, 2021, 12, 4434-4439.
Before 2020 (Selected Publications)
1. Zang, X.; Tai, K.; Jian, C.; Shou, W.; Ferralis, N.*; Grossman, J. C.*; “Laser-Induced Tar-Mediated Sintering of Metals and Refractory Carbides in Air”, ACS Nano, 2020, 14, 10413.
2. Zang, X.; Jian, C.; Ingersoll, S.; Adams, J. J.; Li, H.; Lu, Z.; Ferralis, N.*; Grossman, J. C.*;“Laser Engineered Heavy Hydrocarbons: Old Materials with New Opportunities”, Science Advances, 2020, 6, eaaz5231.Reported by MIT News.
3. Zang, X.; Jian, C.; Zhu, T.; Fan, Z.; Wang, W.; Wei, M.; Li, B.;Mateo, F. D.; Ashby, P.; Lu, Z.; Chu, Y.; Wang, Z.; Ding, X.; Xie, Y; Chen, J. ;Hohman, J. N.; Sanghadasa, M.; Grossman, J.;Lin, L. ; “Laser-sculptured Two-Dimensional Transition Metal Carbides for Energy Storage and Energy Harvesting Applications ”, Nature Communication, 2019, 10 (1) 3112. Recommend by Editor in Energy Materials Focus.
4. Jian, C.; Merchant, S.; Zang, X.*; Ferralis, N.*; Grossman, C. J.*; “Structural Evolution of Small Aromatic Mixtures Under Extreme Temperature Conditions: Insights from ReaxFF Molecular Dynamics Investigations”, Carbon, 2019, 155, 309.
5. Morris, O. P.; Zang, X., Gregg, A.; Keller, B.; Getachew, B.; Ingersoll, S.; Elsen, H. A.; Disco, M. M.; Ferralis, N.; Grossman, J. C.; “Natural Carbon By-Product for Transparent Joule Heaters: The Case of Steam-Cracker Tar”, Advanced Materials, 2019, 1900331.
6. Zang, X.; Hohman, J. N.; Yao, K.; Ci. P.; Yan, A.; Wei, M.; Hayasaka, T.; Zettl, A; Schuck, J.; Wu, J.; Lin, L.; “Metallo-Hydrogel-Assisted Synthesis and Direct Writing of Transition Metal Disulfide”, Advanced Functional Materials, 2019, 1807612. Reported by Materials Views.
7. Zang, X.; Chen, W.; Zou, X.; Hohman, J. N.; Yang, L.; Li, B.; Wei, M.; Zhu, C.; Liang, J.; Sanghadasa, M.; Gu, J.; Lin, L.; “Self-assembly of Large-area Two-dimensional Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis”, Advanced Materials, 30 (50), 1805188. Frontispieces; Highlighted by UC Berkeley News; Highlighted by UC Berkeley Engineering Magazine; Highlighted by Materials Today
8. Zang, X.; Shen, C.; Chu, Y.; Li, B.; Wei, M.; Zhong, J.; Sanghadasa, M.; Lin, L.; “Laser Induced Molybdenum Carbide-graphene Composites for 3D Foldable Paper Electronics”, Advanced Materials, 2018, 30 (26), 1800062, Frontispieces; Highlighted by AdvanedScienceNews; Highlighted by UC Berkeley College of Engineering News; Featured by Nature Photonics News
9. Zang, X.; Shen, C.; Kao, E.; Warren, R.; Zhang, R. ; Teh, K. S.; Zhong, J.; Wei, M.; Li, B.; Chu, Y.; Sanghadasa, M. ; Lin, L.; “Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors,” Advanced Materials, 2018, 30 (5), 1704754. Highlighted by Molecular Foundry Research News; Highlighted by DOE Science News Source; Highlighted by UC Berkeley Mechancial Engineering News
10. Zang, X.; Shen, C.; Sanghadasa, M.; Lin, L.; “High Voltage Supercapacitor in Aqueous Electrolyte”, ChemElectroChem (invited review), 2019, 6(4), 976-988. Cover, ESI highly cited paper.
11. Zang, X.; Zhou, Q.; Chang, J.; Liu, Y.; Lin, L.,“Graphene and carbon nanotube (CNT) in MEMS/NEMS applications”. Microelectronic Engineering 2015, 132, 192-206. ESI highly cited paper
12. X Zang, Y Tan, Z Lv, J Gu, D Zhang, Moth wing scales as optical pH sensors, Sensors and Actuators B: Chemical, 2012, 166, 824-828.
13. X Zang, Y Ge, J Gu, S Zhu, H Su, C Feng, W Zhang, Q Liu, D Zhang. Tunable optical photonic devices made from moth wing scales: a way to enlarge natural functional structures' pool, Journal of Materials Chemistry, 2011, 21 (36), 13913-13919.
专利
1.臧浠凝;张政和,一种激光冲击高压煤制金刚石膜的制备方法, 2024-06-28,中国, ZL 202310529679.2
2. 臧浠凝; 赵喆; 李庆昂; 黄金财 ; 高分子骨植入物多通道传感器的设计及加工方法, 2023-03-17, 中国, ZL202211373489.8
3. 臧浠凝; 张曼; 黄金财 ; 应用于道路健康检测的焦油应变传感阵列, 2023-04-21, 中国,
ZL202210626141.9
4. 臧浠凝; 黄金财; 胡行健 ; 一种多自由度高能束源原位加工高分子智能传感器的方法, 2023-04-04, 中国, ZL202211373471.8
5. 臧浠凝; 赵喆; 胡行健; 黄金财; 李庆昂 ; 血管支架、人体血管局部变形与血管局部动力学监测系统, 2023-02-28, 中国, ZL202211373459.7
6. 臧浠凝; 李庆昂 ; 柔性磁电复合低频机械天线及其制备方法, 2023-04-07, 中国,
ZL202210224080.3 (专利)
7. 赵喆; 臧浠凝; 等人; CFR-PEEK骨科植入物及其制备方法、无线传感装置, 2022-09-02, 中国, ZL202111618690.3
8. 臧浠凝; 黄金财; 等人 ; 煤焦油基薄膜电子器件及其制备方法, 2022-11-08, 中国, ZL202111444516.1
9 臧浠凝; 等人; 制备碳化中间相沥青的方法, 2023-02-03, 中国, ZL202111433653.5 (专利)
US Patent
10. Systems and methods for manufacturing sintered metals, J Grossman, X Zang, N Ferralis, C Jian, KY Tai, US Patent 11,919,077
11. Processes for forming transparent, conductive films from heavy hydrocarbons, and devices and systems into which such films are incorporated, Jeffrey Grossman, Brent Keller, Owen Morris, Mark Disko, Heather Elsen, Xining Zang, Nicola Ferralis, Ximena Hasbach, US Patent App. 16/901,778